Synthesis and X-ray structure of the heteronuclear cluster, $(\mu-H)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{IrOs}_{3}(\mathrm{CO})_{10}$

Leh-Yeh Hsu, Wen-Liang Hsu, Deborah A. McCarthy, Jeanette A. Krause, Jang-Hoon Chung and Sheldon G. Shore *
The Department of Chemistry, The Ohio State University, Columbus, OH 43210 (USA)

(Received May 10, 1991; in revised form July 22, 1991)

Abstract

$(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}$ was prepared in 21% yield by reaction of $(\mu-\mathrm{H})_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ with $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ir}(\mathrm{CO})_{2}$. The cluster was characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass spectrometry and by X-ray crystallography. The structure of $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}$ consists of a tetrahedral cluster core with a semi-bridging carbonyl from Ir to Os . It closely resembles the other members of the series $(\mu-H)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MOs}_{3}(\mathrm{CO})_{10}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh})$. The semi-bridging carbonyl has greater bridging character as $\mathrm{M}=\mathrm{Ir}<\mathrm{Rh}<\mathrm{Co}$. This is reflected in the relative intensities and shapes of the semi-bridging CO stretching bands in the IR spectra and in the ${ }^{13} \mathrm{C}$ NMR chemical shifts of the semi-bridging carbonyl signals of the compounds. The semi-bridging carbonyl ${ }^{13} \mathrm{C}$ resonance is shifted to higher field from cobalt to iridium.

Introduction

The reaction of $(\mu-\mathrm{H})_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ with metal carbonyls under conditions (thermal [1-8] or photolytic [9]) that cause formation of unsaturated metal carbonyl fragments has been shown to be a general route to triosmium based mixed-metal clusters [10,11]. Earlicr work in this laboratory showed that the presence or absence of added H_{2} had a significant effect on the types and distributions of products that were formed [3,5-8]. The reaction of $(\mu-H)_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ with ($\eta^{5}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Kh})$ in the absence of added H_{2} resulted in high yields of $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoOs}_{3}(\mathrm{CO})_{10}$ [2] and $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{RhOs}_{3}(\mathrm{CO})_{10}$ [5,7]. Some systematic studies of trinuclear clusters have been reported in which one of the metals is varied down a group of the periodic table [12], but the tetranuclear clusters have not been examined in this manner. It was of interest to complete the series $\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{3} \mathrm{H}_{5}\right) \mathrm{MOs}_{3}(\mathrm{CO})_{10}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})\right.$ through the synthesis and structural characterization of the iridium analogue. Reported here are the synthesis and characterization of $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}$. Its structure and spectral properties are discussed and compared with the other members of the series.

Experimental

Chemicals and solvents

$\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{Cl}$ (Strem), $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ (Strem), cyclopentadiene (Aldrich), and ${ }^{13} \mathrm{CO}$. $99.9 \%{ }^{13} \mathrm{C}$ (Matheson Scientific Products) were all used without further purification. Toluene (Aldrich) was dried by means of refluxing and storing over sodium benzophenone ketyl. Hexane was dried by stirring it over concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. then by stirring it over KH and distilling it into a glass storage bulb. (μ $\mathrm{H})_{2} \mathrm{Os}_{3}(\mathrm{CO})_{11}[13]$ was prepared by a published method.

Infrared and NMR spectra

Infrared spectra of solutions were recorded on a Mattson Cygnus-25 FTIR spectrometer. Proton and carbon-13 spectra were obtained on a Bruker-500 spectrometer at 500.14 and 125.76 MHz respectively. Chemical shifts are referred to $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\delta 0.00 \mathrm{ppm}\right)$ and $\left.\mathrm{Si}^{(13} \mathrm{CH}_{3}\right)_{4}\left({ }^{13} \mathrm{CNMR} . \delta 0.00 \mathrm{ppm}\right)$.

X-Ray structure determination

A suitable crystal was mounted on the tip of a glass fiber. All X-ray data were collected on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated Mo- K_{r} radiation ($0.710730 \AA$), and all crystallographic computations were carried out on a PDP $11 / 44$ computer using SDP (Structure Detcrmination Package) [14]. Crystal data are given in Table 1.

Lattice parameters were obtained by a least squares refinement of the angular settings from 25 reflections lying in a 2θ range of $24-30^{\circ}$. Intensity data $(4<2 \theta<$ 55°) were collected in the 2θ scan mode. Intensity data showed no significant decay. Data were corrected for absorption using the numerical method based on the Gaussian integration formula with a grid of $24 \times 4 \times 14$ points [15].

The structure was solved by a combination of the direct method meltan $11 / 8=$ and the difference Fourier technique, and was refincd by full-matrix least squares refinement. Analytical atomic sattering factors were used throughout the struc-

Table 1
Crystal data for $(\mu-H)_{2}\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{\mathrm{MO}_{3}}(\mathrm{CO})_{11}$

Chemical formula	$\mathrm{C}_{15} \mathrm{H}_{7} \mathrm{O}_{10} \mathrm{O}_{5} \mathrm{J5}$
Formula weight	1110.02
Space group	Pbeca (No.61)
T ($\left.{ }^{\circ} \mathrm{C}\right)$	25
$a(\lambda)$	15.171(2)
$b(A)$	17.750021
$c(A)$	$14.829(2)$
$V\left(\dot{A}^{3}\right)$	3994.5
Z	8
$\lambda(A)$	0.71073
$n_{\text {calk }}\left(\mathrm{gcm}{ }^{\text {c }}\right.$)	3.691
$\mu\left(\mathrm{cm}^{-1}\right)$	257.23
Transmission coefficient (c)	$0.9-10.34$
$R(\digamma)$	0.065
$R_{u}(F)$	0.083

Table 2
Positional parameters and their estimated standard deviations (e.s.d.s) for $\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}\right.$

Atom	x	y	z	$B\left(\AA^{2}\right)^{a}$
Ir	$0.30800(5)$	$0.15019(5)$	$0.04771(5)$	2.45(1)
Os1	$0.18572(5)$	$0.23334(4)$	$0.14157(5)$	2.46 (1)
Os2	$0.14298(5)$	$0.08264(5)$	$0.07118(6)$	2.59 (1)
Os3	$0.25956(6)$	$0.09592(5)$	$0.21340(5)$	2.69 (1)
C11	$0.163(2)$	$0.293(2)$	$0.037(2)$	4.3(5)
C12	0.280(2)	$0.301(1)$	$0.182(2)$	4.0(5)
C13	$0.091(2)$	$0.279(1)$	$0.207(2)$	4.1(5)
C21	$0.175(2)$	-0.015(2)	$0.032(2)$	4.3(5)
C22	-0.054(2)	-0.094(1)	$0.022(2)$	3.1(4)
C 23	$0.069(2)$	$0.042(2)$	$0.165(2)$	$4.5(6)$
C24	$0.220(2)$	$0.150(1)$	-0.043(2)	$4.7(5)$
C31	$0.354(2)$	$0.134(2)$	0.283(1)	3.65)
C. 32	$0.319(2)$	$0.003(1)$	$0.183(2)$	3.9(5)
C33	0.201(2)	$0.053(1)$	$0.311(1)$	3.5(4)
O11	$0.150(1)$	$0.323(1)$	-0.028(1)	7.0(5)
O12	$0.327(1)$	$0.340(1)$	$0.207(1)$	4.5(4)
O13	$0.036(1)$	$0.309(1)$	$0.245(1)$	5.3(4)
O21	$0.194(1)$	-0.075(1)	$0.010(1)$	5.5(5)
O 22	$0.001(1)$	$0.106(1)$	-0.072(1)	5.2(4)
O 23	$0.023(1)$	$0.020(1)$	$0.21511)$	5.5 (4)
O24	$0.203(1)$	$0.152(1)$	-0.119(1)	6.2(5)
O31	$0.410(2)$	$0.160(1)$	0.326 (1)	$6.7(5)$
O32	$0.354(1)$	$0.048(1)$	$0.167(2)$	6.1(5)
O33	$0.162(2)$	$0.025(1)$	$0.367(1)$	5.5(5)
C41	$0.449(1)$	$0.121(1)$	$0.087(7)$	4.0(5)
C42	$0.435(1)$	$0.203(2)$	$0.086(2)$	4.6(6)
C43	$0.414(2)$	$0.224(1)$	-0.005(2)	5.4(5)
C44	$0.413(2)$	$0.155(2)$	-0.055(2)	4.7(6)
C45	$0.434(1)$	$0.095(1)$	$0.003(2)$	4.3(5)
H41	0.49(2)	$0.08(2)$	0.15(2)	*
H42	0.48 (2)	0.24(2)	$0.15(2)$	*
H43	$0.38(2)$	0.27(2)	-0.01(2)	*
H44	$0.39(2)$	$0.12(2)$	-0.14(2)	*
H45	0.42(2)	$0.05(2)$	-0.03(2)	*

${ }^{a}$ Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as: $(4 / 3) \times\left[a^{2} \times B(1,1)+b^{2} \times B(2,2)+c^{2} \times B(3,3)+\right.$ $a b(\cos \gamma) \times B(1,2)+a c(\cos \beta) \times B(1,3)+b c(\cos \alpha) \times B(2,3)]$.
ture refinement. Full-matrix least squares refinements minimizing ($\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|$) were carried out using anisotropic thermal parameters for all non-hydrogen atoms. Weights were taken as $w=\left[\sigma(I)^{2}+(k I)^{2}\right]^{-1 / 2}$. Final positional parameters are given in Table 2.

Preparation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ir}(\mathrm{CO})_{2}$
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ir}(\mathrm{CO})_{2}$ was prepared following a published procedure [16] with slight modifications, by reaction of $\mathrm{Ir}(\mathrm{CO})_{3} \mathrm{Cl}\left(0.510 \mathrm{~g}, 1.6\right.$ mmol) with $\mathrm{K}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ($3.7 \mathrm{~g}, 35 \mathrm{mmol}$) in 40 mL of hexanes at $40^{\circ} \mathrm{C}$ for 12 h . This gave a brown solid and a yellow solution which was filtered in cacuo. The solution was cooled to $0^{\circ} \mathrm{C}$ and the solvent removed by evaporation into a $-196^{\circ} \mathrm{C}$ trap under static vacuum. This
gave a yellow liquid, $\left(\mu^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{lr}(\mathrm{CO})_{2}(0.426 \mathrm{~g}, 1.35 \mathrm{mmol}, 85 \%$ vield based on $\operatorname{Ir}(\mathrm{CO})_{3} \mathrm{Cl}$), which was characterized by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy [16].

Preparation of ${ }^{\prime} \mathrm{CO}$ cmiched $(\mu-H)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{HrOs}_{5}(\mathrm{CO})_{i l}$
Freshly prepared $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \operatorname{Ir}(\mathrm{CO})_{2}(188 \mathrm{mg}, 0.60 \mathrm{mmol})$ was added to a $100-\mathrm{mL}$ flask containing $(\mu-\mathrm{H})_{2} \mathrm{O},(\mathrm{CO})_{11}\left(170 \mathrm{mg}, 0.20 \mathrm{mmol} . ~-25 \%{ }^{17} \mathrm{CO}\right.$ enriched [17]) in 40 mL of dried toluene. The solution was stirred at $90^{\circ}($ for 12 days. Volatiles were removed by means of rotary evaporation leaving a brown solid in the flask. The products were separated by TLC on silica (2 mm) using toluene / heptane $(1: 4)$ as cluent. This yielded four bands (R_{9}): green-yellow (0.80), brown-yellow (0.69), yellow-brown (0.45) and light brown (0.23). The light brown band was identified and characterized as $(\mu-\mathrm{H}),\left(\eta^{5}-\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{HrOs}_{8}\left(\mathrm{CO}_{6}\right.$ $\left(46.6 \mathrm{mg}, 0.0420 \mathrm{mmol}, 216\right.$ yield based on $\left.(\mu-\mathrm{H})_{2} \mathrm{O}_{3}(\mathrm{CO})_{10}\right)$ thy the following methods. IR spectrum (cyclohexanc, $i(\mathrm{CO})$): 2091m. 2070 m .2044 s . 2004xs $1992 \mathrm{~m}(\mathrm{sh}), 1974 \mathrm{~m}, 1965 \mathrm{~m}, 1824 \mathrm{w} \mathrm{cm}{ }^{-1}$. H NMR spectrum ($\left.\mathrm{CD}_{2} \mathrm{Cl}, 2,-60 \mathrm{C}\right): 8$ $5.8(\mathrm{~s}, 5 \mathrm{H}),-18.95(\mathrm{~s}, 1 \mathrm{H}) .-21.28(\mathrm{~s} .1 \mathrm{H}) \mathrm{ppm} .{ }^{18} \mathrm{C} N \mathrm{NM}$ spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$. $\left.-60^{\circ} \mathrm{C}\right): 195.8(\mathrm{~s} . ~ 1 \mathrm{C}), 181.2(\mathrm{~s} .1 \mathrm{C}), 178.7(\mathrm{~s}, 10) .175 .2(\mathrm{~s}, 1 \mathrm{C}) 1720(\mathrm{~d}$. $J(\mathrm{CH})=10.2 \mathrm{~Hz}, 1 \mathrm{C}), 169.9(\mathrm{~s}, 1 \mathrm{C}), 168.1(\mathrm{~s}, 1 \mathrm{C}), 167.2(\mathrm{~d} . /(\mathrm{CH})=10.4 \mathrm{~Hz}, 1 \mathrm{C})$ $16.5 .3(\mathrm{~d}, J(\mathrm{CH})=10.1 \mathrm{~Hz}, 10), 164.3(\mathrm{~d}, J(\mathrm{CH})=11.4 \mathrm{~Hz}, 1 \mathrm{C}) .82 .7(\mathrm{~s} .5 \mathrm{C}) \mathrm{ppm}$.

The other three fractions were characterized by 'H NMR spectroscopy. First band, green-yellow (0.80), 'H NMR spectrum $\left(\mathrm{CDCl}_{3} .30^{\circ} \mathrm{C}\right): 5.82$ (s), 5.63 (s). $-15.75(\mathrm{~s}),-17.84(\mathrm{~s}),-20.47(\mathrm{~d}, J(\mathrm{CH})=5 \mathrm{~Hz}),-21.61(\mathrm{~s})$ ppm. Second band. brown-yellow (0.69), 'II NMR spectrum ($\left.\mathrm{CDCl}_{3}, 30^{\circ} \mathrm{C}\right), 5.50$ (s), 5.37 (N$) .+77$ (s).

Table 3

A. Metal-metal distances			
Os(1)-Os(2)	$2.94+11$	Os(1)-1r	2.79413
Os(1 --O) (3)	2.889011	() (2)-It	2.70861:
Os(2)-()s(3)	2.76 .311	() (3) 1	2741 ()
B. Metal-camonsl distances			
Os(1)-C(11)	1.912)	O)(3)-C(3)	1.8923
Os(1) ((12)	$1.900(2)$	Os(3)-($\times 32)$	1.93(2)
Os(1)-((1.3)	1.91(2)	()$\times(3)-(33)$	1.860)
()s(2)-C(2)	$1.890)$		
Os(2) (122)	[.94(31	Os(2) (24)	$23 \times 2)$
Os(2) (120)	1.430	It ($\mathrm{Cl}^{(24)}$	1.908 ${ }^{2}$
(. Cabon-oxygen distances			
(111$)-\mathrm{O}(11)$	1.12(2)	(123) O(23)	1.642)
(12$)-0(12)$	$1.0602)$	($(24)-$)(24)	$1.13(2)$
(113$) \cdots(13)$	1.1423	(31$)$ (31$)$	1.10(2)
(21$) \mathrm{O}(21)$	1.14(2)	(132)-0(32)	1080
(22) 0×22	1.11(2)	(331) O(3,	1.132
D. Metal-carbon and carbon-carbon ring destances			
Ir-m(4)	2.28(2)	($(41)-(42)$	1.40(3)
Ir - $\mathrm{C}(42)$	2.21(2)	C(4)-C(45)	1.35(3)
Ir C(43)	$2222)$	(142) $\mathrm{C}(43)$	1.454.3)
Ir C(44)	$2.210)$	($(1+3) \cdots(44)$	1.4.2.3)
lr-C(4.5)	2.2421	$(1+4)-(1+5)$	$1.40 \times 3)$

$3.86(\mathrm{~s}), 3.40(\mathrm{~s}),-19.9(\mathrm{~s}) \mathrm{ppm}$. Third band, yellow-brown, ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{2}, 30^{\circ} \mathrm{C}\right): 5.39(\mathrm{~s}), 5.40(\mathrm{~m}),-12.79(\mathrm{dd}, J(\mathrm{CH})=10 \mathrm{~Hz}),-14.50(\mathrm{~s}),-17.15$ (s) ppm. Each of these bands appear to be mixtures present in insufficient quantities to be further separated, characterized, and identificd.

Table 4
Selected bond angles (deg) and e.s.d.s for $\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}\right.$

A. Intermetallic angles			
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3)$	56.53(2)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$	62.76(2)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Ir}$	58.74(2)	Os(1)-Os(3)-Ir	58.41(2)
Os(3)-Os(1)-Ir	$58.08(2)$	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Ir}$	61.13(2)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$	60.71(2)	Os(1)--Ir-Os(2)	64.11(2)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Ir}$	57.14(2)	Os(1)-Ir-Os(3)	63.50(2)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{Ir}$	59.03(2)	$\mathrm{Os}(2)-\mathrm{Ir}-\mathrm{Os}(3)$	59.84(2)
B. Metal-metal-carbon angles			
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(11)$	100.0(7)	$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(23)$	102.4(7)
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(11)$	146.7(7)	$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(23)$	81.7(6)
$\mathrm{Ir}-\mathrm{Os}(1)-\mathrm{C}(11)$	$90.2(7)$	$\mathrm{Ir}-\mathrm{Os}(2)-\mathrm{C}(23)$	i40.6(6)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(12)$	145.9(6)	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(31)$	101.2(6)
Os(3)-Os(1)-C(12)	$97.3(5)$	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(31)$	158.9(6)
$\mathrm{Ir}-\mathrm{Os}(1)-\mathrm{C}(12)$	89.8(7)	$\mathrm{Ir}-\mathrm{Os}(3)-\mathrm{C}(31)$	99.3(5)
$\mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{C}(13)$	$113.8(6)$	$\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{C}(32)$	$144.8(6)$
$\mathrm{Os}(3)-\mathrm{Os}(1)-\mathrm{C}(13)$	117.6(5)	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(32)$	92.9(6)
Ir-Os(1)-C(13)	$173.5(6)$	$\mathrm{Ir}-\mathrm{Os}(3)-\mathrm{C}(32)$	$88.2(6)$
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(21)$	152.2(6)	Os(1)-Os(3)-C(33)	$116.7(6)$
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(21)$	$98.5(7)$	$\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{C}(33)$	104.8(6)
$\mathrm{Ir}-\mathrm{Os}(2)-\mathrm{C}(21)$	97.1(6)	$\mathrm{Ir}-\mathrm{Os}(3)-\mathrm{C}(33)$	165.9(6)
$\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{C}(22)$	108.1(4)	Os(1)-Ir-C(24)	83.2(8)
$\mathrm{Os}(3)-\mathrm{Os}(2)-\mathrm{C}(22)$	168.3(4)	$\mathrm{Os}(2)-\mathrm{Ir}-\mathrm{C}(24)$	57.2(7)
$\mathrm{Ir}-\mathrm{Os}(2)-\mathrm{C}(22)$	119.4(5)	Os(3)-Ir-C(24)	116.6(7)
C. Carbon-metal-carbon angles			
$\mathrm{C}(12)-\mathrm{Os}(1)-\mathrm{C}(11)$	$92.2(8)$	$\mathrm{C}(32)-\mathrm{Os}(3)-\mathrm{C}(31)$	94.4(8)
$\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(11)$	92.6 (9)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(31)$	94.6(8)
$\mathrm{C}(13)-\mathrm{Os}(1)-\mathrm{C}(12)$	97.1(9)	$\mathrm{C}(33)-\mathrm{Os}(3)-\mathrm{C}(32)$	92.9(8)
$\mathrm{C}(22)-\mathrm{Os}(2)-\mathrm{C}(21)$	$93.2(8)$	$\mathrm{C}(24)-\mathrm{Os}(2)-\mathrm{C}(21)$	$96.8(8)$
$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(21)$	91.6 (9)	$\mathrm{C}(24)-\mathrm{Os}(2)-\mathrm{C}(22)$	77.5(7)
$\mathrm{C}(23)-\mathrm{Os}(2)-\mathrm{C}(22)$	$98.3(8)$	$\mathrm{C}(24)-\mathrm{Os}(2)-\mathrm{C}(23)$	$170.8(9)$
D. Metal-carbon-metal anyles			
$\mathrm{Ir}-\mathrm{C}(24)-\mathrm{Os}(2)$	80.8(7)		
E. Metal-carbon-oxygen angles			
$\mathrm{Os}(1)-\mathrm{C}(11)-\mathrm{O}(11)$	175.042)	$\mathrm{Os}(2)-\mathrm{C}(24)-\mathrm{O}(24)$	127.0(2)
$\mathrm{Os}(1)-\mathrm{C}(12)-\mathrm{O}(12)$	176.0(2)	$\mathrm{Os}(3)-\mathrm{C}(31)-\mathrm{O}(31)$	177.0(2)
$\mathrm{Os}(1)-\mathrm{C}(13)-\mathrm{O}(13)$	$177.0(2)$	$\mathrm{Os}(3)-\mathrm{C}(32)-\mathrm{O}(32)$	178.0(2)
$\mathrm{Os}(2)-\mathrm{C}(21)-\mathrm{O}(21)$	178.0(2)	$\mathrm{Os}(3)-\mathrm{C}(33)-\mathrm{O}(33)$	176.0(2)
$\mathrm{Os}(2)-\mathrm{C}(22)-\mathrm{O}(22)$	174.0(2)	Ir -C(24)-O(24)	148.0(2)
Os(2)-C(23)-O(23)	176.0(2)		
F. Carbon angles within ring			
$\mathrm{C}(45)-\mathrm{C}(41)-\mathrm{C}(42)$	108.0(2)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	109.0(2)
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	107.0(2)	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(41)$	111.0(2)
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	105.0(2)		

Results and discussion

$\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}\left(\mathrm{CO}_{11}\right.\right.$, an air stable, orange-red solid, was prepared in 21% yield according to the following reaction.

It was characterized by IR. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and mass spectrometry, and by single crystal X-ray crystallography. Selected distances and angles are given in Tables 3 and 4. The molecular structure of ($\mu-\mathrm{H}_{2}\left(\eta^{-}-\mathrm{C}_{4} \mathrm{H}_{3}\right)$ IrOs $\mathrm{s}_{3}(\mathrm{CO})_{\text {in }}$ (Fig. 1) is similar to the structures of $(\mu-\mathrm{H})_{2}\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoO}_{3}\left(\mathrm{CO}_{10}[2]\right.$ and $(\mu-\mathrm{H})_{2} \eta^{2}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{RhOs}_{3}(\mathrm{CO})_{10}[5.7]$. A semi-bridging carbonyl group resides across the ItOs(2) bond. Although the hydride ligands were not located, their presence across the $\mathrm{Os}(1)-\mathrm{Os}(2)$ and $\mathrm{Os}(1)-0 \mathrm{O}(3)$ atoms is inferred from criteria established by Churchill [18]. Hydrogen bridged and non-bridged osmium-osmum bond distances agree well with those in $(\mu-)_{2}\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoO}_{5}\left(\mathrm{CO}_{10}\right.$ [2] (2.940(1). $2.870(1), 2.778(1) \AA)$ and $\left(\mu-\mathrm{H}_{2}\left(\eta^{3}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{RhOs}_{3}(\mathrm{CO})_{10} 15.71(2.95(9), 2.867(1)\right.$. $2.782(1) \AA$) and fall within the range observed for comparable bonds in other neutral tetrahedral osmium containing clusters [19-22].

The bridging character of the semi-bridging carbonyl increases as $\mathrm{M}=\mathrm{Ir}<\mathrm{Rh}$ $<$ Co. With increased tendency of the carbonyl to bridge the $M-O$ b bond. the $\mathrm{M}-\mathrm{Os}$ distance decreases relative to the non-bridged $\mathrm{M}-\mathrm{O}$ sond distances: Ir O .

Fig. 2. Infrared spectra (hexanes, $\nu(\mathrm{CO})$) of $(\mu-\mathrm{H})_{2}\left(\dot{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MOs}_{3}(\mathrm{CO})_{10}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$.
bridged distance $=2.798(1) \AA, \quad \mathrm{Ir}-\mathrm{Os}$ non-bridged distances $=2.749(1) \AA$ and 2.740(1) \AA; $\mathrm{Rh}-\mathrm{Os}$ bridged distance $=2.736(1) \AA ; \mathrm{Rh}-\mathrm{Os}$ non-bridged distances $=$ $2.730(1) \AA$ and $2.729(1) \AA$; Co-Os bridged distance $=2.645(1) \AA$, Co-Os nonbridged distance $=2.672(1) \AA$ and $2.680(1) \AA$. The semi-bridging $\mathrm{Co}-\mathrm{Os}$ bond is the shortest $\mathrm{Co}-\mathrm{Os}$ bond, while the semi-bridging $\mathrm{Ir}-\mathrm{Os}$ bond is the longest $\mathrm{Ir}-\mathrm{Os}$ bond. Increasing semi-bridging character leads to longer $\mathrm{Os}-\mathrm{C}_{\text {bridge }}$ bond distances in the series proceeding from cobalt to iridium, $2.208(1) \AA, 2.231 \AA$, and 2.38(2) Å, respectively.

Figure 2 gives the IR spectra of $(\mu-H)_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CoOs}_{3}(\mathrm{CO})_{10}[2],(\mu-\mathrm{H})_{2}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{CpRhOs}_{3}(\mathrm{CO})_{10}[5,7]$, and $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IIOs}_{3}(\mathrm{CO})_{10}$. The intensity of the bridge carbonyl stretching band of $\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}\right.$ is less than

${ }^{33} \mathrm{C}$

and is broadened compared to the corresponding bands of the COOs_{3} and RhO s clusters.

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left(\mu-\mathrm{H}_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{H}_{\mathrm{O}} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right.$ at room temperature consists of a sharp singlet at 194 ppm and a broad indistinct signal at - 160 ppm . indicative of rapid exchange of the terminal carbonyls. The ($\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$) resonance is a sharp singlet at 83.1 ppm . At low temperature ten distinct carbonyl signals appear in the ${ }^{13} \mathrm{C}$ NMR spectrum (Fig. 3). Table 5 lists the ${ }^{\text {"C }} \mathrm{C}$ NMR signals for the carbonyl carbons at $-60^{\circ} \mathrm{C}$. The singlet at 195.8 ppm is assigned to the semi-bridging carbonyl (1). It oecurs at higher field than the corresponding signals from the $\mathrm{CoOs}_{3}[2]$ and $\mathrm{RhOs}_{3}[5,7]$ clusters (237.4 and 222.3 ppm respectively). consistent with the trend of semi-bridging nature of the carbonyl in this series of clusters. Carbonyls (2,6) are trans. to H_{A} and (5,9) are trans to H_{B}. Comparison of the ${ }^{1} \mathrm{H}$ decoupled spectrum with selectively decoupled H_{A} and H_{13} spectra permits the assignments: H_{A} cis to carbonyl $5 . \mathrm{H}_{\mathrm{B}}$ is cis to carbonyl 6 . Carbonyl 5 exhibits cis coupling $(J(C H)=1.2 \mathrm{~Hz})$ to H_{A} when it is decoupled from H_{13} and the assignment of carbonyl 6 is based on comparison of the intensities of the selectively

Table 5
${ }^{13} \mathrm{C}$ NMR data $(300 \mathrm{MHz})$ for $(\mu-\mathrm{H})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{IrOs}_{3}(\mathrm{CO})_{10}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-60^{\circ} \mathrm{C}$

$\delta(\mathrm{ppm})$	Assignment (see Fig. 3)
$195.8(\mathrm{~s})$	1
$181.2(\mathrm{~s})$	4
$178.7(\mathrm{~s})$	10
$175.2(\mathrm{~s})$	7
$172.0(\mathrm{~d}, J(\mathrm{CH})=10.2 \mathrm{~Hz})$	9
$169.9(\mathrm{~s})$	3
$168.1(\mathrm{~s})$	8
$167.2(\mathrm{~d}, J(\mathrm{CH})=10.4 \mathrm{~Hz})$	2
$165.3(\mathrm{~d}, J(\mathrm{CH})=10.1 \mathrm{~Hz})$	6
$164.3(\mathrm{~d}, J(\mathrm{CH})=10.4 \mathrm{~Hz})$	5

decoupled spectra. Assignments of remaining carbonyls were made in a similar manner. Lower field terminal carbonyl signals are assigned to carbonyls 4,10 , and 7 since axial carbonyls generally have resonances at lower field than radial carbonyls [25]. Specific assignments are based on comparisons of intensities of the coupled and decoupled spectra. The remaining carbonyls are assigned in a similar fashion. Variable temperature ${ }^{13} \mathrm{C}$ NMR spectra of the cluster were obtained between -80 and $30^{\circ} \mathrm{C}$. Except for the signal assigned to carbonyl 10 , the signals for the terminal carbonyls broaden and collapse into the baseline at $-25^{\circ} \mathrm{C}$. At $-20^{\circ} \mathrm{C}$ the only visible signal in the low field ${ }^{13} \mathrm{C}$ NMR spectrum is that assigned to the bridging carbonyl, 1 . These results indicate that except for carbonyl 10 , the terminal carbonyls all participate in the initial exchange process, which eventually docs incorporate carbonyl 10. The bridging carbonyl, 1 , does not participate in the exchange, even at $30^{\circ} \mathrm{C}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum at room temperature consists of a sharp peak at 5.80 ppm assigned to the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ group and a very broad peak centered at -20.0 ppm indicating the fluxional nature of the hydrides. At $-60^{\circ} \mathrm{C}$ two bridging hydride peaks appear at -18.95 and -21.29 ppm for H_{B} and H_{A} (Fig. 3) respectively. Assignments are based on related compounds [1,4,5]; osmium-osmium bridging hydrogens cis to a carbonyl bridge have NMR chemical shifts at higher field than -20 ppm and osmium-osmium bridging hydrogens not cis to a bridging carbonyl have NMR chemical shifts at lower field than $-20 \mathrm{ppm}[20,24]$.

Acknowledgments

We thank the National Science Foundation for support of this work through Grant CHE 88-00515. NMR spectra were obtained at The Ohio State University Campus Instrument Center (funded in part by NSF Grant 79-10019).

Supplementary material. A complete list of crystal data, positional parameters, anisotropic thermal parameters, bond distances, and bond angles and a table of calculated and observed structure factor amplitudes is available upon request from the National Auxiliary Publications Service (NAPS). See NAPS document no. 04905 for 31 pages of supplementary material. Order from NAPS, c/o Microfiche Publications, P.O. Box 3515, Grand Central Station, New York, NY 10163-3513. Remit with your order, not under separate cover, $\$ 11.05$ (US funds on a US Bank
only) for photocopies or $\$ 4.50$ for microfiche. Outside the United States and Canada add postage of $\$ 4.50$ for the first 20 pages and $\$ 1.00$ for cach additional 10 pages of material thereafter. $\$ 1.75$ for microfiche postage. Institutions and Organizations may order by purchase order. However, there is a billing and handling charge for this service of $\$ 15.00$, plus applicable postage.

References

1 J.S. Plotkin. D.G.S. Alway, G.R. Weisenherger and S.G. Shore. J. Am. (hem. Soc. 102 (1900) 6140 .

3 SG. Shore W.L. Hsa. GR. Weisenberger. M. Gaste. MR. Ghathall ind G Buemo Organometatlics. $1(1982) 1405$.
4 M.R. Churchill, (. Buene. W.-I. Hivo. J.S. Potkin and S. G. Shore. Inorg. (heni. JI (1482) 1058.

 Organomet. (hemr. $38.3(1989) 421$.
S L...Y. Hsu.W.-I. Hsu, D.-Y. Jan and S. G. Shore, Organometadics S (1986) $10+1$

10 (a) B.F.G. Johnson, J. Lewis. P.R. Rathby, S. Azamma, B. Syed.Mustati. M.J. Tayor. K.H. Whitmie and W. Clegg. S. Chem. Soc. Daton Trans. (1984) 2111: (b) L. J. Farmgit. J. A.K. Howard.

 Cheme Soc., Chem. Commun. (1978) 260 .
 (1988) 383.
 Vol. 6. Pergamon Press. New York. 1982. p. 763.

 Station, TX 77840.

16 E.O. Fischer and K.S. Brenner. Z. Naturforsch., B (1962) 77.4.
17 J. (. Bricker. M.W. Pavne and S.G. Shore. Organometatics. 6 (1987) 2545.
 (b) M.R. Churchill. I. Wormabl. J. Knight and M.J. Mays. Am. Ghem, Soc Chem. Commun.

19 M.R. Churchill and F.J. Hollander, Inorg. Chent. I9 (1080) 306 .
 (1978) 534: (b) M.R. Churchill and F.f. Iollander. Inorg. Chem.. 18(1474) אt?

21 M.R. Churchill and F.J. Hollandet. Morg. Chem. IS (1479) 161.
22 D.-Y. Jan, L.-Y. Itsu, W.-L. Ilsu and G. (i. Shore. Oteamometalics. G (1987) 274.
23 R.D. Adams. 1.T. Hoonath and B.E. Segmatler, Orgamometallics. 1 (lban) 153.
24 S. Bahduri, B.F.G. Johnson. Lewis, P.R. Rathby and D.S. Watmo, If Gem. Soe, Ghem. Comman. (1978) 34.3.
25 G.L. Geoffroy and W.L. Ghadfelter. Inorg. Chem., 19 (1980) 2579 ,

